Disease	Tetanus	Botulism	Tick Paralysis	Polyradiculoneuritis
Presentation	Acute rigid paresis/paralysis	Acute flaccid paresis	Acute flaccid paresis/weakness	Acute flaccid paresis/paralysis
	May be localized or	Signs start in PLs and progress	+/- Gagging, coughing, mydriasis,	"Coonhound paralysis"
	generalized	to TLs (can still wag tail)	dysphonia	
	Reactive to stimuli	Sever cases may have	Rapidly progressive 24-48 hours	LMN signs in all limbs
	Limb extension	respiratory paralysis	Rarely CN/Respiratory	
	Facial mm contraction	Hyporeflexia and Hypotonia	involvement	
	Risus Sardonicus	Dysphonia, Mydriasis		
	Globe retraction	Sluggish PLRs		
	Dysphagia	Poor jaw tone,		
	Possible autonomic signs	+/- Megaesophagus, urine		
		retention, constipation		
		Signs begin hours to days after		
		ingestion		
Overview	Clostridium tetani	Clostridium botulinum	Dermacentor spp; Ixodes spp	Hx of ANY antigenic stimulus in
	Spores enter wounds and grow	Ingestion of preformed	Signs begin 3-9 days after	the past two weeks, not just
	anaerobically	botulinum toxin from carrion /	attachment	raccoon bites!
	Produce tetanospasmin toxin	improperly canned food	Female tick saliva has a	
	that spreads through the blood	Produces botulinum toxin type	neurotoxin	Rapid onset/progression <48
		C (dogs and cats)	Junctionopathy	hours
		GIT > Blood > Peripheral		
		nerves		
		Acts on the axon terminals of		
		peripheral nerves. Does NOT go		
		up the axon to the CNS, does		
		NOT cross the BBB		
Pathogenesis	Toxin enters motor neuron via	Botulinum toxin C breaks down	Female tick saliva has a	Immune-mediated attack of
	end plate	SNARE proteins to Ach vesicles	neurotoxin	ventral nerve root
	Ascends retrograde up the	cannot bind and release	Toxin inhibits Ach release at the	Loss of myelin and axons
	axon to spinal cord and brain	SNARE proteins allow docking	neuromuscular junction	Motor function lost, sensory
	Irreversible binding to	of vesicles to the presynaptic		intact
	presynaptic membrane of	membrane for Ach release		True polyneuropathy
	inhibitory interneurons	No $ACh = no muscle excitation$		

	Interneurons are unable to release inhibitory NT such as GABA and Glycine Disinhibition = excessive LMN action			
Diagnosis	Based on clinical signs Titers (rarely needed)	Hx of ingesting carrion ID toxin in serum, or GI contents/feces via mouse inoculation test	Find ticks; signs improve after removal	Clinical signs +/- history Electrodiagnostics
Treatment	Antitoxin Debridement Antibiotics with anaerobic spectrum (metronidazole) Supportive care 4 ⁺ weeks	Supportive care and time Have to remake SNARE proteins	Remove ticks and apply an antiparasitic	Supportive care (3-4 weeks but can be 4-6 months) Ventilatory support if needed +/- plasmapheresis
Prognosis	Depends on severity of disease Some dogs develop a sleep disorder during/after recovery *black widow envenomation can also cause tetany but less severe than tetanus	Patients that survive typically improve by 24 days *zoonotic risk in a necropsy/lab setting*	Improvement within hours, normal in 3-4 days Good prognosis in the US/Europe Australia has BAD ticks = worse prognosis	Takes weeks to months for full recovery Axons need time to re-myelinate and regrow

Miscellaneous "Junctionopathies"

- Diabetic Polyneuropathy
 - o Cats! Femoral nerve is affected leading to a plantigrade stance
 - o Reversible with control of diabetes mellitus
- Geriatric onset laryngeal paralysis polyneuropathy (GOLPP)
 - o Geriatric Large Breeds
 - o Laryngeal paralysis, hind end weakness/paresis, muscle atrophy
- Autoimmune polyneuritis
 - o Waxing and waning autoimmune
 - o Steroid responsive
 - o Dx on nerve biopsy

Acquired Myasthenia Gravis

Autoimmune attack against Acetylcholine Receptors

Bimodal incidence in dogs (2-4 years and 9-13 years)

- Forms
 - o Focal: Esophageal, pharyngeal weakness
 - o Generalized: Diffuse weakness (including focal signs)
 - o Fulminant: Rare, severe rapidly progressive generalized
- Clinical signs
 - Exercise induced weakness A decrease in Acetylcholine receptors means that there is less available Ach and the nerves cannot properly stimulate muscles
 - o May present as "lame" or "down"
 - Reflexes are often normal by may fatigue
 - Gag often weak
 - o Regurgitation/megaesophagus is common
 - HIGH risk of aspiration pneumonia
 - o Can occur secondarily to a mediastinal mass such as a thymoma *especially in cats
- Diagnosis
 - o Thoracic rads
 - Megaesophagus; thymoma, aspiration pneumonia
 - o Gold Standard: Immunological testing
 - Measure AChR antibodies in the serum
 - Stain muscle for IgG
 - o Electrodiagnostics
- Treatment
 - o Cholinesterase inhibitors
 - Pyridostigmine > adverse effects = SLUDGE-M

- Immunosuppression *not always done, this can worse aspiration pneumonia etc.
- Remove thymoma if present
- Supportive care
 - o Pressure sores
 - Holding patient vertical while eating and drinking + 15-20 min after
 - Thicken water and food
 - o Activity restriction
 - o Antibiotics for aspiration pneumonia
- Prognosis
 - o HIGH risk of aspiration pneumonia
 - Guarded prognosis
 - o If they survive past the first 6 months, there is the chance for spontaneous remission
 - Monitor titers for individual patients

Congenital Myasthenia Gravis

Deficiency / Functional disorder of Acetylcholine Receptors

COLQ mutation in Labs and Goldens

Clinical from birth/few weeks of age

No immunological testing as R is non-functional/missing

- Diagnosis
 - o Single fiber EMG
 - o Response to treatment
 - o Genetic testing *if available
- Treatment
 - o Acetylcholinesterase inhibitors
 - o Increased risk of aspiration pneumonia
 - o Guarded to grave prognosis

Cannot go into remission since this is a deficiency/functional disorder unlike the autoimmune variant

X-Linked Muscular Dystrophy

*Goldens 8-10 weeks

Cats present older (Sphinx, Devon Rex)

Hereditary deficiency in dystrophin (cytoskeletal protein in myofibers)

- Clinical Signs
 - o Progressive weakness, dysphagia, abnormal gait
 - o Some mm atrophy, others hypertrophy
- Diagnosis
 - o Elevated CK
 - o EMG abnormalities
 - o Muscle Biopsy (multifocal phagocytosis, regeneration, IHC dystrophin)
- Treatment
 - o None
 - o Manage secondary complications (aspiration, dysphagia, etc.)

Miscellaneous Non-Inflammatory Myopathies

Myotonia Congenita

Calcium channel disorder leading to persistent muscle contracture

Chow, Min Schnauzer, goats, etc.

Stiff Gait, Hypertrophic mm

- Diagnosis
 - O Clinical dx +/- genetic testing
 - o "Dive bomber" myotonic potentials
 - Non-specific histopathology
 - o CK is normal or mildly increased
- Treatment
 - o No treatment available, reasonable quality of life

Hypokalemic polymyopathy

Cats: hyperpolarized muscle = cannot depolarize

Generalized weakness, muscle pain, cervical ventroflexion (no nuchal ligament)

- Diagnosis
 - o Elevated CK, Low Potassium
- Prognosis
 - o Good if treated early

Malignant Hyperthermia

Mutation in RyR1 gene

Triggered by anesthetic agents

Sustained opening of Ca²⁺ channels = mm contraction

Exertional Rhabdomyolysis

Extreme activity > Myonecrosis

Muscle pain, elevated CK

Myoglobinuria (needs diuresis)

Inflammatory Myopathies

Masticatory Muscle Myositis

Autoimmune myositis > masticatory mm

Temporalis, masseter, pterygoid, rostral digastricus

- Clinical signs
 - o Acute: Pain and swelling
 - o Chronic: Atrophy, trismus
 - o Unilateral or bilateral
- Pathogenesis
 - o Involvement of the mandibular branch of CN V
 - o Unique myofibers type 2M
 - o Autoimmune antibodies to 2M myofiber protein
 - o Can test titers for 2M antibodies
- Diagnosis
 - o Antibody test
 - Mildly increased CK
 - o EMG
 - Muscle biopsy
 - o r/o trigeminal neuropathy

Polymyositis

Autoimmune inflammatory myopathy

- Clinical signs
 - o Weakness, stiff, short strided
 - o Painful mm +/- atrophy
 - o +/- fever, dullness, regurgitation, megaesophagus

- Diagnosis
 - o <u>CK MASSIVELY elevated</u>
 - o EMG
 - o Muscle biopsy

*All autoimmune myositis treatments are the same

Steroid immunosuppression

+/- other immunosuppressants

Treat for 6-8 weeks before a slow taper

Prognosis is fair to good and relapse is possible

Idiopathic Myopathy

Fibrotic myopathy of German Shepherds

Contracture of gracilis +/- semimembranosus